
Replication of Authorized Data Objects in  
Data Grid 

 
D. Subhramanya Sharma, Sudha Gontu 

Dept. of CSE, Sri Sivani College Of Engineering,  
Srikakulam, A.P, India 

 
Abstract— Data fragmentation and Secret sharing approaches 
have been used in distributed storage systems to ensure the 
confidentiality, integrity, and availability of critical 
information. Data fragmentation refers to approaches like 
erasure coding.  To achieve performance goals in data accesses, 
these data fragmentation approaches can be combined with 
dynamic replication. In this paper, we consider data 
fragmentation (both secret sharing and erasure coding) and 
dynamic replication in data grids, in which security and data 
access performance are critical issues. More specifically, we 
investigate the problem of optimal allocation of authorized data 
objects that are partitioned by using secret sharing scheme or 
data fragmentation approach and/or replicated. The grid 
topology we consider consists of two layers. In the upper layer, 
multiple clusters form a network topology that can be 
represented by a general graph. The topology within each 
cluster is represented by a tree graph. We decompose the share 
replica allocation problem into two sub problems: the Optimal 
Inter cluster Resident Set Problem (OIRSP) that determines 
which clusters share replicas and the Optimal Intra cluster 
Share Allocation Problem (OISAP) that determines the number 
of share replicas needed in a cluster and their placements. We 
develop two heuristic algorithms for the two sub problems. The 
heuristic algorithms achieve good performance in reducing 
communication cost and are close to optimal solutions. 
 
Keywords- Secure data, secret sharing, erasure coding, 
replication, data grids, data fragmentation.  

I. INTRODUCTION 
Data grid is a distributed computing architecture 

that integrates a large number of data and computing 
resources into a single virtual data management system[1]. 
Underlying infrastructure for data grids can generally be 
classified into two types: cluster based and peer-peer 
systems[4][5]. It enables the sharing and coordinated use of 
data from various resources and provides various services to 
fit the needs of high-performance distributed and data-
intensive computing. Many data grid applications are being 
developed or proposed, such as DoD’s Global Information 
Grid (GIG) for both business and military domains[2], 
NASA’s Information Power Grid GMESS Health-Grid for 
medical services[3], data grids for Federal Disaster Relief, 
etc. These data grid applications are designed to support 
global collaborations that may involve large amount of 
information, intensive computation, real time, or non real 
time communication. Success of these projects can help to 
achieve significant advances in business, medical treatment, 
disaster relief, research, and military and can result in 
dramatic benefits to the society. 

 
There are several important requirements for data 

grids, including information survivability, security, and 
access performance. For example, consider a first responder 

team responding to a fire in a building with explosive 
chemicals. The data grid that hosts building safety 
information, such as the building layout and locations of 
dangerous chemicals and hazard containment devices, can 
help draw relatively safe and effective rescue plans. Delayed 
accesses to these data can endanger the responders as well as 
increase the risk to the victims or cause severe damages to 
the property. At the same time, the information such as 
location of hazardous chemicals is highly sensitive and, if 
falls in the hands of terrorists, could cause severe 
consequences. Thus, confidentiality of the critical 
information should be carefully protected. The above 
example indicates the importance of data grids and their 
availability, reliability, accuracy, and responsiveness. 
Replication is frequently used to achieve access efficiency, 
availability, and information survivability. The underlying 
infrastructure for data grids can generally be classified into 
two types: cluster based and peer-to-peer Systems. 

 
In pure peer-to-peer storage systems, there is no 

dedicated node for grid applications (in some systems, some 
servers are dedicated). Replication can bring data objects to 
the peers that are close to the accessing clients and, hence, 
improve access efficiency. Having multiple replicas directly 
implies higher information survivability. In cluster-based 
systems, dedicated servers are clustered together to offer 
storage and services. However, the number of clusters is 
generally limited and, thus, they may be far from most 
clients. To improve both access performance and 
availability, it is necessary to replicate data and place them 
close to the clients, such as peer-to-peer data caching. As can 
be seen, replication is an effective technique for all types of 
data grids. Existing research works on replication in data 
grids investigate replica access protocols resource 
management and discovery techniques replica location and 
discovery algorithms and replica placement issues. 

 
Replication of keys can increase its access 

efficiency as well as avoiding the single-point failure 
problem and reducing the risk of denial of service attacks, 
but would increase the risk of having some compromised key 
servers. If one of the key servers is compromised, all the 
critical data are essentially compromised. Beside key 
management issues, information leakage is another problem 
with the replica encryption approach[6]. Generally, a key is 
used to access many data objects. When a client leaves the 
system or its privilege for some accesses is revoked, those 
data objects have to be re encrypted using a new key and the 
new key has to be distributed to other clients. If one of the 
data storage servers is compromised, the storage server could 
retain a copy of the data encrypted using the old key. Thus, 
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the content of long-lived data may leak over time. Therefore, 
additional security mechanisms are needed for sensitive data 
protection. In this paper, we consider combining data 
partitioning and replication to support secure, survivable, and 
high performance storage systems. Our goal is to develop 
placement algorithms to allocate share replicas such that the 
communication cost and access latency are minimized. The 
remainder of this paper is organized as follows: Section 2 
describes a data grid system model and the problem 
definitions. Section 3 introduces a heuristic algorithm for 
determining the clusters that should host shares. 
 

2. EXIS TING S YS TEM: 
        An existing problems in the fields of science, 
engineering, and business, which cannot be effectively dealt 
with using the current generation of supercomputers, in fact 
due to their size and complexity, these problems are often 
very numerically and/or data intensive and consequently 
require a variety of heterogeneous resources that are not 
available on a single machine. A number of teams have 
conducted experimental studies on the cooperative use of 
geographically distributed resources unified to act as a single 
powerful computer. This new approach is known by several 
names, such as meta computing, scalable computing, global 
computing, Internet computing, and more recently peer-to-
peer or Grid computing. In grid computing schemes for data 
partitioning include secret sharing[8] and erasure coding[7]. 
Both schemes partitioned data into shares and distribute 
them to different processor to achieve availability and 
integrity. Secret sharing scheme assure confidentiality even 
if some share are compromised . 
 

In erasure coding data shares can be encrypted and the 
encryption key can be secret shared and distributed with the 
data shares to assure confidentiality[9]. However changing 
the number of shares in data partitioning scheme is generally 
costly. 
 

3. PROPOS ED S YSTEM: 
We consider data partitioning (both secret sharing and 

erasure coding) and dynamic replication in data grids, in 
which security and data access performance are critical 
issues. More specifically, we investigate the problem of 
optimal allocation of sensitive data objects that are 
partitioned by using secret sharing scheme or erasure coding 
scheme and/or  replicated. 

 
The topology within each cluster is represented by a tree 

graph. We decompose the share replica allocation problem 
into two sub problems: the Optimal Inter cluster Resident Set 
Problem (OIRSP) that determines which clusters need share  
replicas[10] and the Optimal Intra cluster Share Allocation 
Problem (OISAP) that determines the number of share 
replicas needed in a cluster and their placements. 

 
As in proposed system number of shares in a data 

partitioning scheme is costly it is necessary to add additional 
shares close to a group of clients to reduce the 
communication cost and access latency. Thus it is most 
effective to combine the data partitioning and replication 
techniques for higher performance secure storage design. 

 
Our goal is to develop placement algorithm to allocate 

share replicas such that the communication cost and access 
latency are minimized . We introduce a heuristic algorithm 
for determining the clusters that should host shares .we 
introduce another heuristic algorithm for share allocation 
with in a cluster . 

 
4 OIRSP SPECIFICATION: 

We define the first problem, OIRSP, as the optimal resident set 
problem in a general graph (intercluster level graph) with an 
MSC HMSC. Our goal is to determine the optimal RC that yields 
minimum access cost at the cluster level. For a cluster Hx RC 

with | Rx | ≥ l, all read request from Hx are served locally and the 
cost is 0 at the cluster level. For a cluster Hx with | Rx | < l, it 
always transmits all read access requests in Hx to the closest 
cluster Hy RC to access   l distinct shares, with |Ry| ≥ l. The read 
cost of cluster at the cluster level is Ar (Hx) * | δ (Hx, RC)|. Let 
Read CostC (GC, RC) denote the total read cost  in GC  with the 
resident set RC, then 
 
Read CostC (GC , RC)= ∑Hx Ar (Hx) * | δ(Hx, RC) |. 
 
Update CostC (GC ,RC) = wC * rC

 
(RC)|. 

 Let Update CostC (GC , RC) denote the total update cost in 
GC with the resident set RC, then 
 
  Thus, the total access cost in GC, denoted as Cost (GC,RC) 
is defined as follows: 
       CostC (GC,RC) = Update CostC (GC,RC) 
+ Read CostC (GC ,RC). 
 
The problem here is to decide the share replica resident set RC in 
GC, such that the communication cost CostC (GC,RC) is 
minimized.  
 

5.OISAP SPECIFICATION: 
   When we consider allocation problem within a cluster Hx, we 
can isolate the cluster and consider the problem independently.  
As discussed earlier, all read requests from remote clusters can 
be viewed as read requests from the root node. Also, the wC

Thus, we can simplify the notation when discussing 
allocation within Hx by referring to everything in the cluster 
without the cluster subscript. For example, we use G = (P, E) 
to represent the topology graph of Hx, where P = {P1,P2, . .  
,PN}. Similarly, Proot represents the root node of Hx, δ(Pi, 
Pj) represents the shortest path between two nodes inside Hx, 
and R represents the resident set of Hx 

 

updates in the entire system can be considered as updates done 
at the root node of the cluster.  

Let ReadCost (R) denote the total read cost from all the 
nodes in cluster Hx: 
 

𝑅𝑒𝑎𝑑 𝑐𝑜𝑠𝑡(𝑅) = � (𝑝𝑖,𝑅, 𝑙) ∗ 𝐴𝑟(𝑝𝑖)
𝑝𝑖𝜖𝐻𝑥

 

For each update in the system, the root node Proot

Write Cost(R) = wC * | (Proot, R, |R)|. 

 needs to 
propagate the update to all other share holders inside Hx. Let 
Write Cost(R) denote the total update cost in Hx. Then 

Let Cost(R) denote the total cost of all nodes in Hx, then 
Cost (R) = Write Cost (R) + ReadCost (R). 
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Our goal is to determine an optimal resident set R to allocate 
the shares in Hx, such that cost(R) is minimized. Note  that 
m≥ R ≥ l ( we will prove this in the next section).We propose 
a heuristic algorithm, with a complexity of O(N3

 

) to find the 
near optimal solution for this problem, Where N is the 
number of nodes in the cluster. 

 
H The set of M clusters in te system C  

HX,  HY,  H Denote individual cluster in HZ 
c  

R The entire set of clusters that host shares of data  
d 

C  

R The entire set of nodes that host shares of data be  
in cluster H

X 

x and i t is changed to R if considering  
only a single cluster Hx later 

δ(HX, HY Shortest path between clusters H) x and Hy with  
distance |δ(Hx,Hy)|  

RC(rC The minimal spanning tree routed at H) msc  that  
connects all clusters in Rc  

Ar(HX)| AW(H X The total no. of read, write requests from a  
cluster H

) 
x 

V The entire set of N nodes in cluster X 

P A node in cluster HX,I  x 
R X

’,R A resident set that is potentially di fferent from RC’  x  
or Rc 

δ(P X,I,P X,J Shortest path between two nodesP) xj  and Pxj  
ϒ(P X, I , R X,  a), 
ϒ(P X, I, R X, L) and 
ϒ(P X, I,  R X, |r X

The minimal  spanning tree routed at P

|) 

xi  that  
connects a nodes, l nodes and all the nodes in Rx 

Ar(P X,I )|AW(P X,I The total  no. of read write requests from a node  
P

) 
x,i 

Updatecost, 
Writercost®, 
Updatecostc(Gc,Rc

The total  update cost in the entire data grid, the 
updatecost inside a single cluster only, and the 
updatecost at the cluster level only, res pectively  ) 

Readcost, 
readcost(r), 
Readcostc(Gc,Rc

The total readcost in the entire data grid, the 
readcost inside a single cluster only, and the 
readcost at the cluster level only, res pectively ) 

Tcost, Cost(R), 
and costc(Gc,Rc

The total  update cost in the entire data grid, the 
accesscost inside a single cluster only, and the 
accesscost at the cluster level only, respectively 

) 

Table 1:    Summary of the frequently used Notation 
 

6. OIRSP SOLUTIONS: 
In this section, we present a heuristic algorithm for OIRSP. First 
(in Section 6.1), we discuss some properties that are very useful 
for the design of the heuristic algorithm. In Section 6.2, we 
present the heuristic algorithm that decides which cluster should 
hold share replicas to minimize access cost. 
 
6.1. Some Useful Properties: 
    We first show that if a cluster Hx is in R (an optimal 
resident set), then Hx should hold at least share replicas (l is 
the number of shares to be accessed by a read request). If Hx 
is in RC and Hx has less than l shares, then read accesses 
from Hx will anyway need to go to another cluster to get the 
remaining shares. If Hx holds no share replicas, then  read 
accesses from Hx may need to get the l shares from multiple 
clusters. These may result in unnecessary communication 
overhead. 
 
Theorem 6.1 In a general graph GC,Vx, Hx  ϵ  Gc 

 

,|Rx| = 0 or 
|Rx| ≥ l 

Proof: Assume that there exists one cluster Hx in RC, such that 
|Rx| < l. When the resident set is  RC, a read request from Hx 

cannot be served locally and the remaining shares have to be 
obtained from at least one other cluster in GC that holds 

those shares. Thus, | δ (Hx, RC| > 0. Let us construct another 
resident set RC1. RC1 is the same as RC except that in RC1, 
Hx holds l distinct shares. Thus, in RC1, |δ(Hx,RC1)| = 0. 
So, the read cost for read requests from Hx becomes zero. 
Also, in GC, there may be clusters that read from Hx. 
Assume that Hx is the closest cluster in RC of Hy (Hy is not 
in RC). If the optimal resident set is RC, then Hy needs to 
read from Hx and some other clusters since Hx has less than 
l shares. Thus, we can conclude 
 
      ReadCostC (GC,RC) – ReadCostC (GC,RC1) 
 
          ≥ Ar(Hx) *|δ(Hx,RC1)| and, hence, 
      
      ReadCostC (GC,RC1) < ReadCostC (GC,RC). 
 
 
Now let us consider the update cost. Note that we have 
UpdateCostC (GC,RC) = wC*| C (RC)|. Because RC1 and 
RC are actually composed of the same set of clusters, so | C 
(RC1)| = | C (RC)|. Also, wC is independent of the resident 
set. So, we have UpdateCostC (GC,RC1) = 
UpdateCostC(GC,RC). 
 
Theorem 6.2. The optimal resident set is a connected graph 
within the general graph GC. 
 
Proof. Assume that RC is an optimal resident set for GC and 
it is not connected. Since RC is not a connected graph, there 
are two sub graphs RC1 and RC2 that are not connected. 
Without loss of generality, assume that cluster HMSC R1C 
and R2C is the closest sub graph to R1C in the update 
propagation minimal spanning tree of RC. Since GC is 
connected, at least one path existed that connects R1C and 
R2C. Let δ (R1C , R2C ) denote the path connecting R1C 
and R2C in GC with the minimal distance (or minimum 
number of hops between R1C and R2C if distance is 
measured by the number of hops) and let |δ(R1C , R2C )| 
denote the distance. Since R1C and R2C are disconnected, 
there exists a cluster Hx δ (R1C, R2C) and Hx RC. 
 
  Let us consider a new resident set RC1 such that 
RC1 is the same as RC, except that all clusters on path δ 
(R1C, R2C) are in RC1. For each cluster Hx δ(R1C ,R2C ), 
|δ(Hx ,RC1)| = 0.  
 

7. A HEURIS TIC ALGORITHM FOR THE OIRSP 
 The goal of OIRSP is to determine the optimal resident 
set RC in GC. GC is a general graph. 
Each edge in GC is considered as one hop. 
 It has been shown that the problem is NP-complete. 
Thus, we develop a heuristic algorithm  to find a near-
optimal solution. Our approach is to first build a minimal 
spanning tree in GC with RC being the root and then identify 
the cluster to be added to RC based on the tree structure. The 
clusters in GC access data hosted in RC along the shortest 
paths, and these paths and the clusters form a set of the 
shortest path trees. Since all the nodes in RC are connected, 
we view them as one virtual node S. Then, S, all clusters that 
are not in RC, and all the shortest access paths form a tree 
rooted at S, which is denoted as SPT(GC, RC) (an example 
of the tree is shown in Fig. 2b). We develop an efficient 
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algorithm Build_SPT to construct SPT(GC,RC) based on the 
current resident set RC. To facilitate the identification of a 
new resident cluster, we also define VC (GC, RC) as the 
vicinity set of S, where V Hx V C(GC,RC), we have Hx RC 
and Hx is a neighboring cluster of S. Note that from 
Theorem 6.2,we know that the clusters in RC are connected. 
 
 Build SPT (GC,RC) first constructs VC(GC,RC) by 
visiting all neighboring clusters of RC. If a cluster Hx in 
VC(GC,RC) has more than one neighbor in RC, then one of 
them is chosen to be the parent cluster. Next, Build SPT 
(GC, RC) traverses GC starting from clusters in 
VC(GC,RC). From a cluster Hx, it visits all Hx’s 
neighboring clusters. Assume that Hy is a neighboring 
cluster of Hx. When Build_SPT visits Hy from Hx, it assigns 
Hx as Hy’s parent if Hy does not have a parent. 
 
In this case, Hy is in the same tree as Hx, and Hy’s tree root 
is set to Hx’s (which is a cluster in RC). Since all read 
requests from Hy go through the root, say Hz, Ar(Hy) is 
added to Ar(Hz)1 for later use (for new resident cluster 
identification). In case Hy already has a parent, the distances to 
S via the original parent and via Hx are compared. If Hx 
offers a shorter path to S, then Hy’s parent is reset to Hx and 
the corresponding adjustments are made. To achieve a faster 
convergence for new RC identification, Hy’s parent is also 
changed to Hx if Hx’s tree root Hz hasa higher value of 
Ar(Hz)1, when the distances to S via Hy’s original parent 
and via Hx are equal. The detailed algorithm for Build_SPT 
is given in the following (assume that V C(GC,RC) is 
already identified). In the algorithm, each node Hx has 
several fields. Hx. root and Hx. parent are the root and parent 
clusters of Hx, respectively. Hx. dist is the distance from Hx 
to Hx’s root (at the end of the algorithm, it is the shortest 
distance). We also use Next (Hx) to denote the set of Hx’s 
neighbors. 
 
Build_SPT(Gc,Rc

{ 
) 

For all Hx,Hx є Vc (Gc,Rc

{ Insert  H
) 

x  into queue; Hx,root   Hx ; Hx,dist 
A

0; 
r(Hx)’ Ar(Hx

While (queue!=0) 
);} 

{ Hx
For all H

 Remove a node from queue; 
y , Hy є Next (Hx) Λ Hy  !є R

{ If(H
c 

y 
{Insert H

 is not marked as visited)then 
y into queue; Hy.dist  Hx.dist

H
+1; 

y.parent Hx 
H

; 
y.root Hx.root 

A
;  

r (Hy.root )’  Ar (Hy.root )’+Ar(Hy); Mark Hy 
Else 

as visited;} 

{ 
If(Hy.dist > Hx.dist+1 ν ((Hy .dist= Hx.dist+1)Λ Ar(Hy.root 
)’<Ar(Hx.root )’

{ A
)) then 

r(Hy.root)’Ar(Hy.root)’-Ar(Hy
H

); 
y .dist Hx.dist+1; Hy.parent Hx

H
; 

y.root Hx
A

.root; 
r(Hy.root)’ Ar(Hy.root)’+Ar(Hy

} 
);}} 

} 
} 

Actually, the check for Hy. dist > Hx .dist + 1 in the 
algorithm is not necessary since a queue is used (a node is 
always visited from a neighbor with the shortest distance to 
S). A sample general graph GC with current resident set RC 
= {H1, H2, H3} is shown in Fig. 2a. The corresponding 
SPT(GC , RC) is shown in Fig. 2b, where RC is represented 
by the super node  labeled as S. When constructing SPT 
(GC, RC), S’s immediate neighbors, including H4, H5, H6, 
H7, H8, and H9, are visited first. H4 is visited twice but H1 
is selected as the parent since H4 is visited from H1 first and 
there is no need for adjustment when it is visited the second 
time. From the clusters nearest to S, the clusters that are two 
hops away from S, including H10, H11, H12, H13, H14, and 
H15, are visited. Finally, the nodes that are further away 
from S are visited. 
We develop a heuristic algorithm to find the new resident set 
for GC in a greedy manner. We try to find a new resident 
cluster in V C (GC,RC) and, once found, update RC 
accordingly. The algorithm is shown below. RC is initialized 
to {HMSC}. The algorithm first constructs SPT (GC,RC) 
and identifies V C(GC,RC). Then, a cluster Hy with the 
highest Ar(Hy)l is selected. If 
Ar(Hy)1 > wC, then Hy is added to RC. If Ar (Hy)1 ≤ wC, 
then the algorithm terminates since no other nodes can be 
added to RC while reducing the access communication cost. 
Note that, in each step, only one cluster can be added into 
RC because SPT (GC,RC) and Ar(Hx)1 changes when RC 
changes. 
 
 Repeat {HMSC}, Rc
{Build SPT (GC,RC); 

       

Select a cluster Hy, where Hy has the maximum 
Ar(Hy)l among all clusters in V C(GC,RC);                        
Unt il (Ar(Hy)l ≤ wC)  Rc  U {Hy};} ifAr (Hy) > Wc  R
 

c 

Theorem 7.3. In a general graph GC, if |RC| > 1, then CostC 
(GC,RC) < CostC(GC, {HMSC}). Furthermore, every time a 
new cluster Hx (Hx satisfies the cost constraint) is added to 
current resident set RCl(RCl C RC), the communication cost 
decreases, i.e., CostC(GC,RCl U{Hx}) < CostC(GC, RCl). 
Proof:. According to Theorem 6.1, V x, Hx RC, |Rx|≥ l. The 
algorithm works by adding one cluster at a t i m e . Let RC= 
{H1, H2, . . .,Hn}, |RC| = n and H1= HMSC. Assume that Hi 
is added at the (i- 1) th step to RC. If we show that after 
adding each cluster, the cost reduces, then we can conclude 
that CostC(GC,RC) < CostC(GC, {HMSC}). We use 
induction to prove this. 
 
Step 1. We show that CostC (GC; {HMSC;H2}) < 
CostC(GC, {HMSC}). According to the algorithm, 
       VC(GC, {HMSC}), then UpdateCostC(GC,{HMSC, 
H2})= UpdateCostC(GC,{HMSC})+ wC*H2 
|δ(H2,{HMSC})|. For each cluster Hx that reads {HMSC} 
through H2, δ(Hx, {HMSC}) is the shortest path in GC from 
Hx to {HMSC}. It is obvious that H2 δ(Hx, {HMSC}) and 
H2 is the cluster on δ(Hx,{HMSC}) right next to HMSC, 
and |δ(Hx,H2)| = |δ(Hx, {HMSC})| - |δ(H2, {HMSC})|. Any 
other path δ(Hx,H2)1 or δ(Hx, HMSC)1 has a distance no 
less than |δ(Hx, H2)|. With resident set {HMSC,H2}, 
δ(Hx,H2) will continue to be the least distance path for 
cluster Hx to read from H2 in 
GC, and δ(Hx, {HMSC, H2}) = δ(Hx, {HMSC}) - |δ(H2, 
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{HMSC})|. For any cluster Hx that reads {HMSC} through 
H2, δ(Hx, {HMSC}) will, at least, not increase if H2 is 
added into the resident set. Then, we can easily get Read 
CostC (GC, {HMSC, H2}) + Ar (H2)1 ≤ Read  CostC(GC, 
{HMSC}). 
According to the heuristic resident set algorithm, we know 
Ar (H2)l > wC. Thus, CostC(GC, {HMSC, H2}) - 
CostC(GC, {HMSC}) = UpdateCostC(GC, {HMSC, H2}) - 
UpdateCostC (GC , {HMSC}) + ReadCostC (GC, {HMSC , 
H2})- ReadCostC(GC,{Hmsc}) ≤ wC - Ar(H2)l *|δ(H2, 
{HMSC})|< 0. 
 
Step 2. Assume that CostC (GC, {HMSC, H2, . . .,Hk}) < 
CostC(GC, {HMSC, H2, . . ., Hk-1}). We show that CostC 
(GC , {HMSC , H2 , . . . , Hk}) > CostC(GC, {HMSC, H2, . 
. .;Hk+1}), with k < n. It can be seen that the proof is the 
same as above and we will not show it here. 
 
By induction, we know that CostC (G, {HMSC, H2, . . . , 
Hn}) < CostC{GC, {HMSC, H2, . . ., Hn-1}). Thus, CostC 
(GC,RC) < CostC(GC, {HMSC}). Also, from the induction 
process, we can conclude that every time a new cluster Hi 
joins RC, the communication cost decreases, 
i.e.,CostC(GC,RC(i-1)) < CostC (GC,RC). 
 

8 .OISAP SOLUTIONS: 
            Now, we only consider the cost inside a single cluster 
Hx. As discussed in Section 2, the topology of Hx is a tree, 
denoted as T. For simplicity, we define the distance of each 
edge in T uniformly as one hop. In the following, we first 
show two important properties of the OISAP problem with a 
tree topology. Then, we give a heuristic algorithm to decide 
the numbers of shares needed in Hx and where to place 
them. 
 If the Hx’s resident set R is not connected, then R 
consists of multiple disconnected sub resident set R1;R2; . . 
.;Rn, where n > 1, and each sub resident set is connected. We 
say R is j þ connected in Hx, if and only if minðjRijÞ _ j, 
where j > 0, Ri, for all i _ n, are sub graphs in Hx, and jRij is 
the number of server nodes in Ri. We define Ri <pos Rj as 
follows: I f Ri <pos Rj, then 9Py, Pz 2 Hx, where Py 2 Ri  ̂
Pz 2 Rj, such that Pz is an ancestor of Py in T. Informally, 
nodes in Rj are closer to the root than nodes in Ri. 
Otherwise, Ri _pos Rj. 
 
Theorem8.1: Let RS denote the resident set computed by 
the node joing phase of SDP tree. If the constraint |r|<m is 
removed,then RS is the optimal resident set such that 
cost(RS) is minimal. 
Proof :Assume that RS is not optimal suppose that there 
exists an optimal resident set RS’ such that 
cost(RS)<cost(RS)’.two cases exist. 
Case1:  RS c  RS’. According to theorem, and the SDP tree 
algorithm RS and RS’ are both connected , and node in RS’ 
– RS must be a desended of some node in RS. Otherwise, 
SDP-tree would have added the node into RS. Let py denote 
a node such that it’s parent node is in RS and py  !є RS while 
py belongs to RS’. According to SDP-tree, IF py is not added 
in RS, it is only because that adding py will increase access 
cost. From lemma , we know that adding any subset of 

desendants of py together with py

Case2: RS !c RS’ ^ RS!= RS’. Let p

 would also increase the 
cost. Thus, there exists no SR’ such that RS c RS’. 

y  be the first node that 
SDP- tree adds, such that py belongs to RS. And py not 
belongs to RS’. Let R’ denote the resident set that SDP-tree 
computed before adding py. Note that R’!=ᶿ (because R’ 
contains at least Proot) , nad R’ c RS’. According theorem, 
RS’ is a connected subgraph in T. since py !є RS’ then no 
node in the sub tree rooted at py should be in RS’. According 
to the SDP-tree algorithm, f py є RS then diff(py

 

) is minimal 
among the neighbouring nodes of r’. 

Two cases should be considered.1 ) cost( 
R’)ᴗ(py)<cost(R’).the node py is a neighbour of some node 
in R’. This means cost(RS’ᴗ{ py})<cost(RS’), which is a 
contradiction to the assumption.2) |R’|<l, diff(py)>=0,and 
diff(py) is minimal among the neighbouring nodes of R’. 
According to lemma, for any node px such that pxєRS’ and 
px!єR’,0<= diff(py)<= diff(px). If for node px such that px є 
RS’ and  Px !є RS, diff(py)= diff(px) , then there exist no 
pzsuch that pzєRS’ and px!єR’,0<= diff(py)<= diff(px). If for 
any node px such that pxRS’ and diff(px)<= diff(pz). 
Otherwise px is added to RS before Pz. thus 
cost(RS)<=cost(RS’), which is contradictory to the 
assumption. If there exists some node px such that px є RS’, 
px !є RS’and diff(py) < diff(px), then let pz  be a leaf node of 
the tree composed only by nodes in RS’ and pz  is a 
desecandent of px . according to lemma, diff(py)< diff(px)<= 
diff(pz). Now, construct another resident set RS’’ such that 
RS’’ =RS’ᴗ{py}-{pz}. We know that cost(RS’’)<cost(RS’), 
which contradics the assumption. If there exists some node 
Px such that Px ϵ2 RS’, Px ϵ RS, and diff(Py)Þ < diff(PxÞ,) 
then let Pz  be a leaf node of the tree composed only by 
nodes in RS1 and pz is descendant of px
 

. 

9. CONCLUS ION: 
We have combined data partitioning schemes (secret sharing 
scheme or erasure coding scheme) with dynamic replication 
to achieve data survivability, security, and access 
performance in data grids. The replicas of the partitioned 
data need to be properly allocated to achieve the actual 
performance gains. We have developed algorithms to 
allocate correlated data shares in large-scale peer-to-peer 
data grids. To support scalability, we represent the data grid 
as a two-level cluster based topology and decompose the 
allocation problem into two subproblems: the OIRSP and 
OISAP. The OIRSP determines which clusters need to 
maintain share replicas, and the OISAP determines the 
number of share replicas needed in a cluster and their 
placements. Heuristic algorithms are developed for the two 
sub problems. Experimental studies show that the heuristic 
algorithms achieve good performance in reducing 
communication cost and are close to  optimal solutions. 

 
10. FUTURE ENHANCEMENTS: 

 Several future research directions can be investigated. First, 
the secure storage mechanisms developed in this paper can 
also be used for key storage. In this alternate scheme, critical 
data objects are encrypted and replicated. The encryption 
keys are partitioned and the key shares are replicated and 
distributed. To minimize the access cost, allocation of the 
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replicas of a data object and the replicas of  its key shares 
should be considered together. We plan to construct the cost 
model for this approach and expand our algorithm to find 
best placement solutions. Also, the two approaches 
(partitioning data or partitioning keys) have pros and cons in 
terms of storage and access cost and have different security 
and availability implications. We plan to investigate their 
tradeoffs and  some preliminary analysis results are available 
in [38]. Moreover, it may be desirable to consider multiple 
factors for the allocation of secret shares and their replicas. 
Replicating data shares improves access performance but 
degrades security. Having more share replicas may increase 
the chance of shares being compromised. Thus, it is desirable 
to determine the placement solutions based on multiple 
objectives, including performance, availability, and security. 
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