
Replication of Authorized Data Objects in
Data Grid

D. Subhramanya Sharma, Sudha Gontu

Dept. of CSE, Sri Sivani College Of Engineering,
Srikakulam, A.P, India

Abstract— Data fragmentation and Secret sharing approaches
have been used in distributed storage systems to ensure the
confidentiality, integrity, and availability of critical
information. Data fragmentation refers to approaches like
erasure coding. To achieve performance goals in data accesses,
these data fragmentation approaches can be combined with
dynamic replication. In this paper, we consider data
fragmentation (both secret sharing and erasure coding) and
dynamic replication in data grids, in which security and data
access performance are critical issues. More specifically, we
investigate the problem of optimal allocation of authorized data
objects that are partitioned by using secret sharing scheme or
data fragmentation approach and/or replicated. The grid
topology we consider consists of two layers. In the upper layer,
multiple clusters form a network topology that can be
represented by a general graph. The topology within each
cluster is represented by a tree graph. We decompose the share
replica allocation problem into two sub problems: the Optimal
Inter cluster Resident Set Problem (OIRSP) that determines
which clusters share replicas and the Optimal Intra cluster
Share Allocation Problem (OISAP) that determines the number
of share replicas needed in a cluster and their placements. We
develop two heuristic algorithms for the two sub problems. The
heuristic algorithms achieve good performance in reducing
communication cost and are close to optimal solutions.

Keywords- Secure data, secret sharing, erasure coding,
replication, data grids, data fragmentation.

I. INTRODUCTION
Data grid is a distributed computing architecture

that integrates a large number of data and computing
resources into a single virtual data management system[1].
Underlying infrastructure for data grids can generally be
classified into two types: cluster based and peer-peer
systems[4][5]. It enables the sharing and coordinated use of
data from various resources and provides various services to
fit the needs of high-performance distributed and data-
intensive computing. Many data grid applications are being
developed or proposed, such as DoD’s Global Information
Grid (GIG) for both business and military domains[2],
NASA’s Information Power Grid GMESS Health-Grid for
medical services[3], data grids for Federal Disaster Relief,
etc. These data grid applications are designed to support
global collaborations that may involve large amount of
information, intensive computation, real time, or non real
time communication. Success of these projects can help to
achieve significant advances in business, medical treatment,
disaster relief, research, and military and can result in
dramatic benefits to the society.

There are several important requirements for data

grids, including information survivability, security, and
access performance. For example, consider a first responder

team responding to a fire in a building with explosive
chemicals. The data grid that hosts building safety
information, such as the building layout and locations of
dangerous chemicals and hazard containment devices, can
help draw relatively safe and effective rescue plans. Delayed
accesses to these data can endanger the responders as well as
increase the risk to the victims or cause severe damages to
the property. At the same time, the information such as
location of hazardous chemicals is highly sensitive and, if
falls in the hands of terrorists, could cause severe
consequences. Thus, confidentiality of the critical
information should be carefully protected. The above
example indicates the importance of data grids and their
availability, reliability, accuracy, and responsiveness.
Replication is frequently used to achieve access efficiency,
availability, and information survivability. The underlying
infrastructure for data grids can generally be classified into
two types: cluster based and peer-to-peer Systems.

In pure peer-to-peer storage systems, there is no

dedicated node for grid applications (in some systems, some
servers are dedicated). Replication can bring data objects to
the peers that are close to the accessing clients and, hence,
improve access efficiency. Having multiple replicas directly
implies higher information survivability. In cluster-based
systems, dedicated servers are clustered together to offer
storage and services. However, the number of clusters is
generally limited and, thus, they may be far from most
clients. To improve both access performance and
availability, it is necessary to replicate data and place them
close to the clients, such as peer-to-peer data caching. As can
be seen, replication is an effective technique for all types of
data grids. Existing research works on replication in data
grids investigate replica access protocols resource
management and discovery techniques replica location and
discovery algorithms and replica placement issues.

Replication of keys can increase its access

efficiency as well as avoiding the single-point failure
problem and reducing the risk of denial of service attacks,
but would increase the risk of having some compromised key
servers. If one of the key servers is compromised, all the
critical data are essentially compromised. Beside key
management issues, information leakage is another problem
with the replica encryption approach[6]. Generally, a key is
used to access many data objects. When a client leaves the
system or its privilege for some accesses is revoked, those
data objects have to be re encrypted using a new key and the
new key has to be distributed to other clients. If one of the
data storage servers is compromised, the storage server could
retain a copy of the data encrypted using the old key. Thus,

D. Subhramanya Sharma et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (4) , 2012,4774 -4779

4774

the content of long-lived data may leak over time. Therefore,
additional security mechanisms are needed for sensitive data
protection. In this paper, we consider combining data
partitioning and replication to support secure, survivable, and
high performance storage systems. Our goal is to develop
placement algorithms to allocate share replicas such that the
communication cost and access latency are minimized. The
remainder of this paper is organized as follows: Section 2
describes a data grid system model and the problem
definitions. Section 3 introduces a heuristic algorithm for
determining the clusters that should host shares.

2. EXIS TING S YS TEM:
 An existing problems in the fields of science,
engineering, and business, which cannot be effectively dealt
with using the current generation of supercomputers, in fact
due to their size and complexity, these problems are often
very numerically and/or data intensive and consequently
require a variety of heterogeneous resources that are not
available on a single machine. A number of teams have
conducted experimental studies on the cooperative use of
geographically distributed resources unified to act as a single
powerful computer. This new approach is known by several
names, such as meta computing, scalable computing, global
computing, Internet computing, and more recently peer-to-
peer or Grid computing. In grid computing schemes for data
partitioning include secret sharing[8] and erasure coding[7].
Both schemes partitioned data into shares and distribute
them to different processor to achieve availability and
integrity. Secret sharing scheme assure confidentiality even
if some share are compromised .

In erasure coding data shares can be encrypted and the
encryption key can be secret shared and distributed with the
data shares to assure confidentiality[9]. However changing
the number of shares in data partitioning scheme is generally
costly.

3. PROPOS ED S YSTEM:
We consider data partitioning (both secret sharing and

erasure coding) and dynamic replication in data grids, in
which security and data access performance are critical
issues. More specifically, we investigate the problem of
optimal allocation of sensitive data objects that are
partitioned by using secret sharing scheme or erasure coding
scheme and/or replicated.

The topology within each cluster is represented by a tree

graph. We decompose the share replica allocation problem
into two sub problems: the Optimal Inter cluster Resident Set
Problem (OIRSP) that determines which clusters need share
replicas[10] and the Optimal Intra cluster Share Allocation
Problem (OISAP) that determines the number of share
replicas needed in a cluster and their placements.

As in proposed system number of shares in a data

partitioning scheme is costly it is necessary to add additional
shares close to a group of clients to reduce the
communication cost and access latency. Thus it is most
effective to combine the data partitioning and replication
techniques for higher performance secure storage design.

Our goal is to develop placement algorithm to allocate

share replicas such that the communication cost and access
latency are minimized . We introduce a heuristic algorithm
for determining the clusters that should host shares .we
introduce another heuristic algorithm for share allocation
with in a cluster .

4 OIRSP SPECIFICATION:

We define the first problem, OIRSP, as the optimal resident set
problem in a general graph (intercluster level graph) with an
MSC HMSC. Our goal is to determine the optimal RC that yields
minimum access cost at the cluster level. For a cluster Hx RC

with | Rx | ≥ l, all read request from Hx are served locally and the
cost is 0 at the cluster level. For a cluster Hx with | Rx | < l, it
always transmits all read access requests in Hx to the closest
cluster Hy RC to access l distinct shares, with |Ry| ≥ l. The read
cost of cluster at the cluster level is Ar (Hx) * | δ (Hx, RC)|. Let
Read CostC (GC, RC) denote the total read cost in GC with the
resident set RC, then

Read CostC (GC , RC)= ∑Hx Ar (Hx) * | δ(Hx, RC) |.

Update CostC (GC ,RC) = wC * rC

(RC)|.

 Let Update CostC (GC , RC) denote the total update cost in
GC with the resident set RC, then

 Thus, the total access cost in GC, denoted as Cost (GC,RC)
is defined as follows:
 CostC (GC,RC) = Update CostC (GC,RC)
+ Read CostC (GC ,RC).

The problem here is to decide the share replica resident set RC in
GC, such that the communication cost CostC (GC,RC) is
minimized.

5.OISAP SPECIFICATION:
 When we consider allocation problem within a cluster Hx, we
can isolate the cluster and consider the problem independently.
As discussed earlier, all read requests from remote clusters can
be viewed as read requests from the root node. Also, the wC

Thus, we can simplify the notation when discussing
allocation within Hx by referring to everything in the cluster
without the cluster subscript. For example, we use G = (P, E)
to represent the topology graph of Hx, where P = {P1,P2, . .
,PN}. Similarly, Proot represents the root node of Hx, δ(Pi,
Pj) represents the shortest path between two nodes inside Hx,
and R represents the resident set of Hx

updates in the entire system can be considered as updates done
at the root node of the cluster.

Let ReadCost (R) denote the total read cost from all the
nodes in cluster Hx:

𝑅𝑒𝑎𝑑 𝑐𝑜𝑠𝑡(𝑅) = � (𝑝𝑖,𝑅, 𝑙) ∗ 𝐴𝑟(𝑝𝑖)
𝑝𝑖𝜖𝐻𝑥

For each update in the system, the root node Proot

Write Cost(R) = wC * | (Proot, R, |R)|.

 needs to
propagate the update to all other share holders inside Hx. Let
Write Cost(R) denote the total update cost in Hx. Then

Let Cost(R) denote the total cost of all nodes in Hx, then
Cost (R) = Write Cost (R) + ReadCost (R).

D. Subhramanya Sharma et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (4) , 2012,4774 -4779

4775

Our goal is to determine an optimal resident set R to allocate
the shares in Hx, such that cost(R) is minimized. Note that
m≥ R ≥ l (we will prove this in the next section).We propose
a heuristic algorithm, with a complexity of O(N3

) to find the
near optimal solution for this problem, Where N is the
number of nodes in the cluster.

H The set of M clusters in te system C

HX, HY, H Denote individual cluster in HZ
c

R The entire set of clusters that host shares of data
d

C

R The entire set of nodes that host shares of data be
in cluster H

X

x and i t is changed to R if considering
only a single cluster Hx later

δ(HX, HY Shortest path between clusters H) x and Hy with
distance |δ(Hx,Hy)|

RC(rC The minimal spanning tree routed at H) msc that
connects all clusters in Rc

Ar(HX)| AW(H X The total no. of read, write requests from a
cluster H

)
x

V The entire set of N nodes in cluster X

P A node in cluster HX,I x
R X

’,R A resident set that is potentially di fferent from RC’ x
or Rc

δ(P X,I,P X,J Shortest path between two nodesP) xj and Pxj
ϒ(P X, I , R X, a),
ϒ(P X, I, R X, L) and
ϒ(P X, I, R X, |r X

The minimal spanning tree routed at P

|)

xi that
connects a nodes, l nodes and all the nodes in Rx

Ar(P X,I)|AW(P X,I The total no. of read write requests from a node
P

)
x,i

Updatecost,
Writercost®,
Updatecostc(Gc,Rc

The total update cost in the entire data grid, the
updatecost inside a single cluster only, and the
updatecost at the cluster level only, res pectively)

Readcost,
readcost(r),
Readcostc(Gc,Rc

The total readcost in the entire data grid, the
readcost inside a single cluster only, and the
readcost at the cluster level only, res pectively)

Tcost, Cost(R),
and costc(Gc,Rc

The total update cost in the entire data grid, the
accesscost inside a single cluster only, and the
accesscost at the cluster level only, respectively

)

Table 1: Summary of the frequently used Notation

6. OIRSP SOLUTIONS:
In this section, we present a heuristic algorithm for OIRSP. First
(in Section 6.1), we discuss some properties that are very useful
for the design of the heuristic algorithm. In Section 6.2, we
present the heuristic algorithm that decides which cluster should
hold share replicas to minimize access cost.

6.1. Some Useful Properties:
 We first show that if a cluster Hx is in R (an optimal
resident set), then Hx should hold at least share replicas (l is
the number of shares to be accessed by a read request). If Hx
is in RC and Hx has less than l shares, then read accesses
from Hx will anyway need to go to another cluster to get the
remaining shares. If Hx holds no share replicas, then read
accesses from Hx may need to get the l shares from multiple
clusters. These may result in unnecessary communication
overhead.

Theorem 6.1 In a general graph GC,Vx, Hx ϵ Gc

,|Rx| = 0 or
|Rx| ≥ l

Proof: Assume that there exists one cluster Hx in RC, such that
|Rx| < l. When the resident set is RC, a read request from Hx

cannot be served locally and the remaining shares have to be
obtained from at least one other cluster in GC that holds

those shares. Thus, | δ (Hx, RC| > 0. Let us construct another
resident set RC1. RC1 is the same as RC except that in RC1,
Hx holds l distinct shares. Thus, in RC1, |δ(Hx,RC1)| = 0.
So, the read cost for read requests from Hx becomes zero.
Also, in GC, there may be clusters that read from Hx.
Assume that Hx is the closest cluster in RC of Hy (Hy is not
in RC). If the optimal resident set is RC, then Hy needs to
read from Hx and some other clusters since Hx has less than
l shares. Thus, we can conclude

 ReadCostC (GC,RC) – ReadCostC (GC,RC1)

 ≥ Ar(Hx) *|δ(Hx,RC1)| and, hence,

 ReadCostC (GC,RC1) < ReadCostC (GC,RC).

Now let us consider the update cost. Note that we have
UpdateCostC (GC,RC) = wC*| C (RC)|. Because RC1 and
RC are actually composed of the same set of clusters, so | C
(RC1)| = | C (RC)|. Also, wC is independent of the resident
set. So, we have UpdateCostC (GC,RC1) =
UpdateCostC(GC,RC).

Theorem 6.2. The optimal resident set is a connected graph
within the general graph GC.

Proof. Assume that RC is an optimal resident set for GC and
it is not connected. Since RC is not a connected graph, there
are two sub graphs RC1 and RC2 that are not connected.
Without loss of generality, assume that cluster HMSC R1C
and R2C is the closest sub graph to R1C in the update
propagation minimal spanning tree of RC. Since GC is
connected, at least one path existed that connects R1C and
R2C. Let δ (R1C , R2C) denote the path connecting R1C
and R2C in GC with the minimal distance (or minimum
number of hops between R1C and R2C if distance is
measured by the number of hops) and let |δ(R1C , R2C)|
denote the distance. Since R1C and R2C are disconnected,
there exists a cluster Hx δ (R1C, R2C) and Hx RC.

 Let us consider a new resident set RC1 such that
RC1 is the same as RC, except that all clusters on path δ
(R1C, R2C) are in RC1. For each cluster Hx δ(R1C ,R2C),
|δ(Hx ,RC1)| = 0.

7. A HEURIS TIC ALGORITHM FOR THE OIRSP
 The goal of OIRSP is to determine the optimal resident
set RC in GC. GC is a general graph.
Each edge in GC is considered as one hop.
 It has been shown that the problem is NP-complete.
Thus, we develop a heuristic algorithm to find a near-
optimal solution. Our approach is to first build a minimal
spanning tree in GC with RC being the root and then identify
the cluster to be added to RC based on the tree structure. The
clusters in GC access data hosted in RC along the shortest
paths, and these paths and the clusters form a set of the
shortest path trees. Since all the nodes in RC are connected,
we view them as one virtual node S. Then, S, all clusters that
are not in RC, and all the shortest access paths form a tree
rooted at S, which is denoted as SPT(GC, RC) (an example
of the tree is shown in Fig. 2b). We develop an efficient

D. Subhramanya Sharma et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (4) , 2012,4774 -4779

4776

algorithm Build_SPT to construct SPT(GC,RC) based on the
current resident set RC. To facilitate the identification of a
new resident cluster, we also define VC (GC, RC) as the
vicinity set of S, where V Hx V C(GC,RC), we have Hx RC
and Hx is a neighboring cluster of S. Note that from
Theorem 6.2,we know that the clusters in RC are connected.

 Build SPT (GC,RC) first constructs VC(GC,RC) by
visiting all neighboring clusters of RC. If a cluster Hx in
VC(GC,RC) has more than one neighbor in RC, then one of
them is chosen to be the parent cluster. Next, Build SPT
(GC, RC) traverses GC starting from clusters in
VC(GC,RC). From a cluster Hx, it visits all Hx’s
neighboring clusters. Assume that Hy is a neighboring
cluster of Hx. When Build_SPT visits Hy from Hx, it assigns
Hx as Hy’s parent if Hy does not have a parent.

In this case, Hy is in the same tree as Hx, and Hy’s tree root
is set to Hx’s (which is a cluster in RC). Since all read
requests from Hy go through the root, say Hz, Ar(Hy) is
added to Ar(Hz)1 for later use (for new resident cluster
identification). In case Hy already has a parent, the distances to
S via the original parent and via Hx are compared. If Hx
offers a shorter path to S, then Hy’s parent is reset to Hx and
the corresponding adjustments are made. To achieve a faster
convergence for new RC identification, Hy’s parent is also
changed to Hx if Hx’s tree root Hz hasa higher value of
Ar(Hz)1, when the distances to S via Hy’s original parent
and via Hx are equal. The detailed algorithm for Build_SPT
is given in the following (assume that V C(GC,RC) is
already identified). In the algorithm, each node Hx has
several fields. Hx. root and Hx. parent are the root and parent
clusters of Hx, respectively. Hx. dist is the distance from Hx
to Hx’s root (at the end of the algorithm, it is the shortest
distance). We also use Next (Hx) to denote the set of Hx’s
neighbors.

Build_SPT(Gc,Rc

{
)

For all Hx,Hx є Vc (Gc,Rc

{ Insert H
)

x into queue; Hx,root  Hx ; Hx,dist
A

0;
r(Hx)’ Ar(Hx

While (queue!=0)
);}

{ Hx
For all H

 Remove a node from queue;
y , Hy є Next (Hx) Λ Hy !є R

{ If(H
c

y
{Insert H

 is not marked as visited)then
y into queue; Hy.dist  Hx.dist

H
+1;

y.parent Hx
H

;
y.root Hx.root

A
;

r (Hy.root)’  Ar (Hy.root)’+Ar(Hy); Mark Hy
Else

as visited;}

{
If(Hy.dist > Hx.dist+1 ν ((Hy .dist= Hx.dist+1)Λ Ar(Hy.root
)’<Ar(Hx.root)’

{ A
)) then

r(Hy.root)’Ar(Hy.root)’-Ar(Hy
H

);
y .dist Hx.dist+1; Hy.parent Hx

H
;

y.root Hx
A

.root;
r(Hy.root)’ Ar(Hy.root)’+Ar(Hy

}
);}}

}
}

Actually, the check for Hy. dist > Hx .dist + 1 in the
algorithm is not necessary since a queue is used (a node is
always visited from a neighbor with the shortest distance to
S). A sample general graph GC with current resident set RC
= {H1, H2, H3} is shown in Fig. 2a. The corresponding
SPT(GC , RC) is shown in Fig. 2b, where RC is represented
by the super node labeled as S. When constructing SPT
(GC, RC), S’s immediate neighbors, including H4, H5, H6,
H7, H8, and H9, are visited first. H4 is visited twice but H1
is selected as the parent since H4 is visited from H1 first and
there is no need for adjustment when it is visited the second
time. From the clusters nearest to S, the clusters that are two
hops away from S, including H10, H11, H12, H13, H14, and
H15, are visited. Finally, the nodes that are further away
from S are visited.
We develop a heuristic algorithm to find the new resident set
for GC in a greedy manner. We try to find a new resident
cluster in V C (GC,RC) and, once found, update RC
accordingly. The algorithm is shown below. RC is initialized
to {HMSC}. The algorithm first constructs SPT (GC,RC)
and identifies V C(GC,RC). Then, a cluster Hy with the
highest Ar(Hy)l is selected. If
Ar(Hy)1 > wC, then Hy is added to RC. If Ar (Hy)1 ≤ wC,
then the algorithm terminates since no other nodes can be
added to RC while reducing the access communication cost.
Note that, in each step, only one cluster can be added into
RC because SPT (GC,RC) and Ar(Hx)1 changes when RC
changes.

 Repeat {HMSC}, Rc
{Build SPT (GC,RC);

Select a cluster Hy, where Hy has the maximum
Ar(Hy)l among all clusters in V C(GC,RC);
Unt il (Ar(Hy)l ≤ wC)  Rc U {Hy};} ifAr (Hy) > Wc R

c

Theorem 7.3. In a general graph GC, if |RC| > 1, then CostC
(GC,RC) < CostC(GC, {HMSC}). Furthermore, every time a
new cluster Hx (Hx satisfies the cost constraint) is added to
current resident set RCl(RCl C RC), the communication cost
decreases, i.e., CostC(GC,RCl U{Hx}) < CostC(GC, RCl).
Proof:. According to Theorem 6.1, V x, Hx RC, |Rx|≥ l. The
algorithm works by adding one cluster at a t i m e . Let RC=
{H1, H2, . . .,Hn}, |RC| = n and H1= HMSC. Assume that Hi
is added at the (i- 1) th step to RC. If we show that after
adding each cluster, the cost reduces, then we can conclude
that CostC(GC,RC) < CostC(GC, {HMSC}). We use
induction to prove this.

Step 1. We show that CostC (GC; {HMSC;H2}) <
CostC(GC, {HMSC}). According to the algorithm,
 VC(GC, {HMSC}), then UpdateCostC(GC,{HMSC,
H2})= UpdateCostC(GC,{HMSC})+ wC*H2
|δ(H2,{HMSC})|. For each cluster Hx that reads {HMSC}
through H2, δ(Hx, {HMSC}) is the shortest path in GC from
Hx to {HMSC}. It is obvious that H2 δ(Hx, {HMSC}) and
H2 is the cluster on δ(Hx,{HMSC}) right next to HMSC,
and |δ(Hx,H2)| = |δ(Hx, {HMSC})| - |δ(H2, {HMSC})|. Any
other path δ(Hx,H2)1 or δ(Hx, HMSC)1 has a distance no
less than |δ(Hx, H2)|. With resident set {HMSC,H2},
δ(Hx,H2) will continue to be the least distance path for
cluster Hx to read from H2 in
GC, and δ(Hx, {HMSC, H2}) = δ(Hx, {HMSC}) - |δ(H2,

D. Subhramanya Sharma et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (4) , 2012,4774 -4779

4777

{HMSC})|. For any cluster Hx that reads {HMSC} through
H2, δ(Hx, {HMSC}) will, at least, not increase if H2 is
added into the resident set. Then, we can easily get Read
CostC (GC, {HMSC, H2}) + Ar (H2)1 ≤ Read CostC(GC,
{HMSC}).
According to the heuristic resident set algorithm, we know
Ar (H2)l > wC. Thus, CostC(GC, {HMSC, H2}) -
CostC(GC, {HMSC}) = UpdateCostC(GC, {HMSC, H2}) -
UpdateCostC (GC , {HMSC}) + ReadCostC (GC, {HMSC ,
H2})- ReadCostC(GC,{Hmsc}) ≤ wC - Ar(H2)l *|δ(H2,
{HMSC})|< 0.

Step 2. Assume that CostC (GC, {HMSC, H2, . . .,Hk}) <
CostC(GC, {HMSC, H2, . . ., Hk-1}). We show that CostC
(GC , {HMSC , H2 , . . . , Hk}) > CostC(GC, {HMSC, H2, .
. .;Hk+1}), with k < n. It can be seen that the proof is the
same as above and we will not show it here.

By induction, we know that CostC (G, {HMSC, H2, . . . ,
Hn}) < CostC{GC, {HMSC, H2, . . ., Hn-1}). Thus, CostC
(GC,RC) < CostC(GC, {HMSC}). Also, from the induction
process, we can conclude that every time a new cluster Hi
joins RC, the communication cost decreases,
i.e.,CostC(GC,RC(i-1)) < CostC (GC,RC).

8 .OISAP SOLUTIONS:
 Now, we only consider the cost inside a single cluster
Hx. As discussed in Section 2, the topology of Hx is a tree,
denoted as T. For simplicity, we define the distance of each
edge in T uniformly as one hop. In the following, we first
show two important properties of the OISAP problem with a
tree topology. Then, we give a heuristic algorithm to decide
the numbers of shares needed in Hx and where to place
them.
 If the Hx’s resident set R is not connected, then R
consists of multiple disconnected sub resident set R1;R2; . .
.;Rn, where n > 1, and each sub resident set is connected. We
say R is j þ connected in Hx, if and only if minðjRijÞ _ j,
where j > 0, Ri, for all i _ n, are sub graphs in Hx, and jRij is
the number of server nodes in Ri. We define Ri <pos Rj as
follows: I f Ri <pos Rj, then 9Py, Pz 2 Hx, where Py 2 Ri ̂
Pz 2 Rj, such that Pz is an ancestor of Py in T. Informally,
nodes in Rj are closer to the root than nodes in Ri.
Otherwise, Ri _pos Rj.

Theorem8.1: Let RS denote the resident set computed by
the node joing phase of SDP tree. If the constraint |r|<m is
removed,then RS is the optimal resident set such that
cost(RS) is minimal.
Proof :Assume that RS is not optimal suppose that there
exists an optimal resident set RS’ such that
cost(RS)<cost(RS)’.two cases exist.
Case1: RS c RS’. According to theorem, and the SDP tree
algorithm RS and RS’ are both connected , and node in RS’
– RS must be a desended of some node in RS. Otherwise,
SDP-tree would have added the node into RS. Let py denote
a node such that it’s parent node is in RS and py !є RS while
py belongs to RS’. According to SDP-tree, IF py is not added
in RS, it is only because that adding py will increase access
cost. From lemma , we know that adding any subset of

desendants of py together with py

Case2: RS !c RS’ ^ RS!= RS’. Let p

 would also increase the
cost. Thus, there exists no SR’ such that RS c RS’.

y be the first node that
SDP- tree adds, such that py belongs to RS. And py not
belongs to RS’. Let R’ denote the resident set that SDP-tree
computed before adding py. Note that R’!=ᶿ (because R’
contains at least Proot) , nad R’ c RS’. According theorem,
RS’ is a connected subgraph in T. since py !є RS’ then no
node in the sub tree rooted at py should be in RS’. According
to the SDP-tree algorithm, f py є RS then diff(py

) is minimal
among the neighbouring nodes of r’.

Two cases should be considered.1) cost(
R’)ᴗ(py)<cost(R’).the node py is a neighbour of some node
in R’. This means cost(RS’ᴗ{ py})<cost(RS’), which is a
contradiction to the assumption.2) |R’|<l, diff(py)>=0,and
diff(py) is minimal among the neighbouring nodes of R’.
According to lemma, for any node px such that pxєRS’ and
px!єR’,0<= diff(py)<= diff(px). If for node px such that px є
RS’ and Px !є RS, diff(py)= diff(px) , then there exist no
pzsuch that pzєRS’ and px!єR’,0<= diff(py)<= diff(px). If for
any node px such that pxRS’ and diff(px)<= diff(pz).
Otherwise px is added to RS before Pz. thus
cost(RS)<=cost(RS’), which is contradictory to the
assumption. If there exists some node px such that px є RS’,
px !є RS’and diff(py) < diff(px), then let pz be a leaf node of
the tree composed only by nodes in RS’ and pz is a
desecandent of px . according to lemma, diff(py)< diff(px)<=
diff(pz). Now, construct another resident set RS’’ such that
RS’’ =RS’ᴗ{py}-{pz}. We know that cost(RS’’)<cost(RS’),
which contradics the assumption. If there exists some node
Px such that Px ϵ2 RS’, Px ϵ RS, and diff(Py)Þ < diff(PxÞ,)
then let Pz be a leaf node of the tree composed only by
nodes in RS1 and pz is descendant of px

.

9. CONCLUS ION:
We have combined data partitioning schemes (secret sharing
scheme or erasure coding scheme) with dynamic replication
to achieve data survivability, security, and access
performance in data grids. The replicas of the partitioned
data need to be properly allocated to achieve the actual
performance gains. We have developed algorithms to
allocate correlated data shares in large-scale peer-to-peer
data grids. To support scalability, we represent the data grid
as a two-level cluster based topology and decompose the
allocation problem into two subproblems: the OIRSP and
OISAP. The OIRSP determines which clusters need to
maintain share replicas, and the OISAP determines the
number of share replicas needed in a cluster and their
placements. Heuristic algorithms are developed for the two
sub problems. Experimental studies show that the heuristic
algorithms achieve good performance in reducing
communication cost and are close to optimal solutions.

10. FUTURE ENHANCEMENTS:

 Several future research directions can be investigated. First,
the secure storage mechanisms developed in this paper can
also be used for key storage. In this alternate scheme, critical
data objects are encrypted and replicated. The encryption
keys are partitioned and the key shares are replicated and
distributed. To minimize the access cost, allocation of the

D. Subhramanya Sharma et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (4) , 2012,4774 -4779

4778

replicas of a data object and the replicas of its key shares
should be considered together. We plan to construct the cost
model for this approach and expand our algorithm to find
best placement solutions. Also, the two approaches
(partitioning data or partitioning keys) have pros and cons in
terms of storage and access cost and have different security
and availability implications. We plan to investigate their
tradeoffs and some preliminary analysis results are available
in [38]. Moreover, it may be desirable to consider multiple
factors for the allocation of secret shares and their replicas.
Replicating data shares improves access performance but
degrades security. Having more share replicas may increase
the chance of shares being compromised. Thus, it is desirable
to determine the placement solutions based on multiple
objectives, including performance, availability, and security.

REFERENCES:
[1]. M. Baker, R. Buyya, and D. Laforenza, “Grids and Grid Technology for
Wide-Area Distributed Computing,” Software-Practice and Experience,
2002.
[2]. Global Information Grid, Wikipedia.
[3]. http://www.ccrl-nece.de/gemss/reports.shtml, 2008.
[4]. I. Foster and A. Lamnitche, “On Death, Taxes, and Convergence of
Peer-to-Peer and Grid Computing,” Proc. Second Int’l Workshop Peer-to-
Peer Systems (IPTPS), 2003.
[5]. V. Matossian and M. Parashar, “Enabling Peer-to-Peer Interactions for
Scientific Applications on the Grid,” Proc. Ninth Int’l Euro-Par Conf.
(Euro-Par), 2003.
[6]. H. Krawczyk, “Distributed Fingerprints and Secure Information
Dispersal,” Proc. 12th Ann. ACM Symp. Princip les of Distributed
Computing (PODC), 1993.
[7]. T. Wu, M. Malkin, and D. Boneh, “Building Intrusion Tolerant
Applications,” Proc. DARPA Information Survivability Conf. and
Exposition (DISCEX), 2000.
[8]. A. Shamir, “How to Share a Secret,” Comm. ACM, vol. 22, 1979.
[9]. J. Wylie, M. Bakkaloglu, V. Pandurangan, M. Bigrigg, S. Oguz, K.
Tew, C. Williams, G. Ganger, and P. Khosla, “Selecting the Right Data
Distribution Scheme fo r a Surv ivable Storage System,” Technical Report
CMU-CS-01-120, Carnegie Mellon Univ., 2000.
[10]. L. Xiao, I. Yen, Y. Zhang, and F. Bastani, “Evaluating Dependable
Distributed Storage Systems,” Proc. Int’l Conf. Parallel and Distributed
Processing Techniques and Applications (PDPTA), 2007.

D. Subhramanya Sharma et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (4) , 2012,4774 -4779

4779

	I. Introduction

